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A self-similar solution is obtained, showing the contradictions of the front model 
of phase transition. A mathematical model taking account of the formation of an 
extended frozen region is constructed. 

In drilling boreholes in rock that has been frozen for many years, it is often necessary 
to pass through not only frozen but also thawed rock. Water-bearing thawed zones (thaws be- 
tween freezing) lie at isolated intervals over the depth in regions of both insular and con- 
tinuous propagation of frozen rock [i]. The existence of wet thawed rock at negative tempera- 
tures is often due to mineralization of the pore water. If the thawed rock is flooded and 
is weakly connected and unstable, the drilling and bracing of boreholes poses serious dif- 
ficulty because of the possibility of rock collapse, absorption of flushing liquid and reduc- 
tion in strength of thebracing at negative temperatures. In such rock, special methods 
of drilling and bracing are employed. One such method is drilling with simultaneous bracing 
of rock by freezing [2, 3]. The essence of the method is that, when water cooled to negative 
temperature is circulated in the borehole, freezing of the water in the thawed rock occurs 
directly in the course of drilling. The formation of a strong ice-rock crust in the borehole 
walls, the core, and the moving face is assumed here. Experimental investigation of the 
feeezing of rock when aqueous salt solutions are used as the flushing liquid indicates that 
sufficiently effective freezing is accompanied by breakdown of the crust which forms, on ac- 
count of thawing of the ice in contact with the flushing liquid atrnegative temperatures [2]. 
In the present work, it is shown that mineralization of the pore moisture leads to significant 
qualitative and quantitative features of the freezing process and combined account must be 
taken of the influence of mineralization of the flushing liquid and the pore moisture of 
thawed rock in calculating the conditions offreezingwhen using flushing liquids based on 
salt solutions of with added salt. 

Consider the freezing of rock saturatedwith an aqueous salt solution at concentration 
c o and temperature To, which is in contact with a salt solution (concentration c o ) cooled 
to negative temperature T o . For simplicity, assume that, both in the pore liquid and in the 
flushing liquid, the same salt is dissolved (for example, NaCI). Since freezing cocurs, T o < 
T0; in addition, T < Tph(C0). The condition that the flushing liquid remains unfrozen must 
be satisfied here: T o > Tph(C~ Under these conditions, it is natural to expect the forma- 
tion of two fronts within the framework of the classical scheme of description of phase tran- 
sitions (Stefan problem) [4]: a freezing front X*(t) on account of cooling of the pore liquid 
in contact with the flushing liquid; and a thawing front X,(t) on account of breakdown of 
the ice by the mineralized flushing liquid. A mathematical model of this process is construc- 
ted in the one-dimensional case of a plane phase-transition front, allowing all the fundamental 
aspects of the problem to be elucidated within the framework of the self-similar solution. 

Front Model 

The mathematical formulaton of the problem for the thawed zones (0 < x < X,) and (X* < 
x < ~) includes the heat-conduction equation 

and the diffusion equation of the salt 

OT OZT 
- -  = a ~ -  (i) 

Ot ax ~ 
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For the completely freezing (frozen) zone -X,(t) < x < X*(t) -the heat-conduction equation 
is 

OF c)Z T 
Ot -- a F Ox 2 (3) 

At the freezing front X*(t), the Stefan condition holds 

o.r , _  ~,--&x/+ o~mqX*, (4)  

as well as the condition of complete transfer of the salt to solution in the crystallization 
of water 

( oc '~ + c*.t* = o, (5) D\ Ox /+ 

and the conditions of temperature continuity and equality of the temperature to the equilib- 
rium temperature of phase transition 

T = T+ = T* = Tph(c*)=---Tw--ac*. ( 6 )  

Analogusly, at the thawing front X,(t), the Stefan condition holds 

z ( o r ~  F~--L-. )+--  zT ( ~,~mqx., (7) 

the mass-balance condition for the salt (taking account of the dilution of solution in the thaw- 
ing of ice) 

(Oc I +c,x,=o (8) D 
,Ox /-  

and the conditions of temperature continuity and equality of the temperature to the equilibri- 
um temperatures of phase transition 

T_ = T+ = T ,  = Th(C,) -~- T w - -  e.C,. ( 9 ) 

Assuming that the rock is immersed in the solution, it follows that (disregarding the 
possible wetting of trhe work after thawing) 

x=O:  T =  T O , c = c  o , Tph(C~ ) < T  ~ < Tph(co). ( 1 0 )  

The initial distribution of the temperature and concentration of the salt are assumed 
to be known 

t = O :  T = T  o, C=Co, To>Tph(Co). (ii) 

If To, co, T o , and c o are constant in the initial and boundary conditions in Eqs. (i0) 
and (ii), the given problem has a self-similar solution of the form 

( 1 2 )  T = T ( ~ ) ,  c = c ( ~ ) ,  X*=~tl /2,  X ,=? t l /2 ,  ~5~=xt-1/2. 

This solution is written in explicit form for the thawed zones 

' y 
o<0<, , , : , ,=  ) , 

[3<~<oo:  T = T o + ( T ' - - T o ) e r f c  ( ~-~-'~ /erfc ( ~ )  
~, 2a~/2 / 

/ erfc [5 C=Co+(C*--Co)erfc( 2Dl/2 ] ( ,  / 2D1/2 ) ( 1 4 )  

and in the frozen zone (7 < $ < 8) 
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n ~ /  aF  , - -  err  (?/2a~ m) 
T = T ,  + ( T *  - -  T , )  . . . . . .  . 

err (~/24/2) - -  err (?/2a~/2) ( 15 ) 

After substitut5ing Eqs. (12)-(15) into Eas. (4)-(9), the problem reduces to a system 
of two transcendental equations in 7 and 6, which is easily solved numerically. The follow- 
ing parameter values are used in the calculations: a T = 0.59-10 -6 mZ/sec, a F = 1.14.10 -6 m2/ 
sec, k T = 1.56 W/m.K, l F = 2.14 W/m.K, Pw = i000 kg/m s, Pl = 910 kg/m 3, Ps = 2000 kg/m 3, 
C w = 4.19 kJ/kg.K, C I = 2.09 kJ/kg.K, C s = 0.92 kJ/kg.K, k w = 0.58 W/m.K, k I = 2.33 W/m.K, 
k s = 2.09 W/m.K, D = 1.45"i0 -s m2/sec, m = 0.35, q = 333.7 kJ/kg, T w : 0~ ~ = 66.7~ 

The results of the calculations are shown in Fig. i. Here (and below) 

f = (7" - c =  % h =  - =c/% 

= m r  w, 

(16) 

The solution corresponding to the case of the freezing of rock saturated with weakly 
mineralized liquid is shown in Fig. la. It is evident that, in the thawed zone in front of 
the freezing zone, supercooling is seen, since the temperature curve lies below the tempera- 
ture curve of phase transition uniquely corresponding to the salt concentration according to 
the relation Tph = T w - ~c. 

The case when the front solution indicates an absence of phase transitions, or X* = X, 
is also of interest. This situation arises when all of the ice formed immediately melts, 
on account of the insufficiently strong cooling and the high mineralization of the pore and 
flushing liquids. An example of the calculation of such a solution is shown in Fig. lb. 
However, in this case, supercooling is again observed, which reveals an internal contradiction 
of the front model. 

Supercooling was first observed in the crystallization of metallic alloys [5]. In [6, 
7], a model of a two-phase zone between the zones of single-phase states was developed to con- 
struct a solution not admitting of supercooling. In the two-phase zone, the liquid and solid 
phases coexist in conditions of thermodynamic equilibrium or in conditions determined by the 
crystallization kinetics. In fact, the introdution of the two-phase zone entails rejection 
of the idea that phase transition is localized at a front, and the adoption of the concept 
that phase transition occurs in a temperature spectrum in the volume of the two-phase zone. 
This is in qualitative agreement with a physical experiment indicating dendrite growth in 
the case of supercooling [i0]. In [8, 9], this approach was extended to the description of 
the freezing of aqueous salt solutions in a porous medium. 

Model with Two-Phase Zone 

A consistent theoretical description eliminating supercooling is now constructed. This 
entails introducing the model of the two-phase zone: a zone in which there is a mixture of 
unfrozen water and ice; the volumes of water and ice present are determined in solving the 
problem. In the particular case when the boudnary of thawing coincides with the n~ar bound- 
ary of the two-phase zone, the mathematical formulation takes the form in Eqs. (i) and (2) 
in the thawed zones (0 < x < X,) and (X* < x < ~); in the two-phase zone, the formulation 
includes an energy equation which takes into account that phase transition occurs in the whole 
volume of the zone 

OT 0 c)T Ov 
(9C)t a--~- Ox kt ax --mqoz at 

the mass-conservation law for the salt in the solution 

(17) 

0 . ( v c ) = D  0 Oc - -  ~ ( 1 8 )  

at ox Ox 

and the condition of thermodynamic equilibrium: the local temperature of the mixture of ice 
and solution is equal to the temperature of phase transition corresponding to the local salt 
concentration in solution 
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T \\ ~ ~p.h .~.H ~ ~'~ 7ph /-''--'-" : 
-o, o3 . ~ /  - Y d o ~  -o, o e ~  ~ ~ ~ - / . ' / - -  c - o, o9 

"" r 
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F i g .  l .  D e p e n d e n c e  o f  t h e  d i m e n s i o n l e s s  t e m p e r a t u r e ,  s a l t  c o n -  
c e n t r a t i o n  a n d  p h a s e - t r a n s i t i o n  t e m p e r a t u r e  o n  t h e  d i m e n s i o n -  

l e s s  self-similar variable in the front solution: a) T O = 2~ 
T O = - 2 0 C ,  c o = 0 . 0 0 3 ,  c o = 0 . 0 5 ;  b )  To = I ~  T O = - 3 ~  Co = 

0.03, c ~ = 0.05. 

T = Tph(C ) = T ~ - -  ~c. (19)  

Here (pC) t : PsCs(l - m) + pwCwmv + piCim(l - v), A t = Is(l - m) + %wmV + ~im(l - v). 

At the rear boundary of the two-phase zone, the conditions of heat and mass balance of 
the salt hold, taking account of the desired value of the moisture content v, at this bound- 
ary x = X,(t) 

( OT ~ ~ OT 
kt k-~x ]+-- ~('~x )_=Pi'nq(1--v* )fi*' 

( Oc I __Dr.(  Oc ~ 
O k Ox /_ \ Ox ] + + ( 1 - - v . ) X , = 0 ,  

T_  ---- T+  = T ,  = Tph(C , )  ~-~ T w - -  a c , ,  c_ = r+  ---- c , .  

(20) 

At the forward boundary of the two-phase zone X*, the moisture content v* is unity. Here 
the continuity condtiions for the temperature, the salt concentration, and the heat and mass 
fluxes of salt x = X*(t) are satisfied 

ac 
k-~xj+ k ax l+ 

v*= l, T_= T+-~ T * :  Th(C*)~T w-o:c*, c_=c+=c*. (21) 

The boundary conditions at the motionless boundary and the initial conditions take the 
form in Eqs. (i0) and (ii), respectively. 

If T o , c o , T o , and c o are constant in the initial and boundary conditions, the given 
problem has a self-similar solution of the form in Eq. (12); here again, v = v($). This solu- 
tion is written in the explicit form in Eq. (13) in the thawed zone (0 < $ < y) and in Eq. 
(14) in the thawed zone (6 < ~ < =). In the two-phase zone (~ < $ < ~), a system of ordinary 
differential equations is obtained 

k.tT" + T'v'm (~ -- ~ + mPllV'~/2 + T' (9C)t~12 = O, ( 2 2 )  

Dvd+Dvc'+~c'~/2+cv'~/2 = O, 

and the temperature and salt concentration are related at each point by the condition of therm- 
odynamic equilibrium in Eq. (19). 

Thus, finding the solution reduces to solving the boundary problem for the system in 
Eqs. (19) and (22) with the boundary conditions at the desired boundaries of the two-phase 
zone in Eqs. (20) and (21). 

The results of the calculations are shown in Fig. 2. Here the two-phase zone (T < $ < 
6) is a zone of partial freezing, where phase transition occurs in a temperature spectrum 
in the volume occupied by a mixture of mineralized water and ice, and the boundary of the 
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Fig. 3. Regions of realization of different freezing conditions 
(m = 0.227 i0 -=, ~ 0 = 0.I191): i) ~0 = 0-48"10-4; 2) 0.95.10-~; 
3) 1.43.10-4; 4) 1.91.10 "" 

zone and the distribution of the desired functions are completely determined by the set of 
initial and boundary conditions. 

Regions of Realization of Freezing Conditions 

In the space of dimensionless parameters of the problem, the boundaries of the regions 
of realization of front conditions and conditions with the formation of a two-phase zone are 
now found. The following dimensionless parameters are introduced 

o D/a~,  Oo = (To - -  Tb(co)) /~,  ( 2 3 )  

0 o = (T  O _ ~ h ( ~ ) ) / T  ' % = ~co/~,  ~o = aco/~.  

The front model becomes inapplicable in two cases: first, when supercooling appears in front 
of the crystallization front; and second, when the solution indicates the absence of phase 
transitions in the supercooling of pore water. In these cases, the solution ofthe problem 
is constructed taking account of the formation of a two-phase zone. Thus, analysis of the 
front model allows the'boundaries of the different regions to be constructed. 

The boundaries on the plane (00, 0 ~ are shown in Fig. 3 with various values of ~0 
and fixed @ ~ and m. Here the regions above the curves correspond to front conditions of 
crystallization, and increase in the initial salt concentration ~ 0 leads to reduction in 
their region of realization and correspondingly to increase in the region of realization of 
conditions with the formation of a two'phase zone (the regions under the curves). With any 
~0, an interval of initial temperatures e 0 for which front conditions of phase transitions 
do not appear at all (the case of no phase transformations) may be isolated. 

As follows from this analysis of the applicabilty of the front model to the description 
of the freezing of thawed rocks by cooled salt solution, there is a parameter range in which 
this model leads to contradiction (supercooling) and does not permit adequate description 
of the physical process. On account of the dependence of the phase-transition temperature 
on the salt concentration, freezing of the solution occurs not at a localized front but in 
the volume of the zone of coexistence of unfrozen water and ice. The use of the model of 
the two-phase zone allows the contradiction of the front scheme to be eliminated; in fact, 
this model is a formalization of the well-known principle of dynamic equilibrium of water 
and ice in frozen rock formulated in [II] on the basis of numerous experimental data. 
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For the given process of the freezing of thawed rock by a cooled salt solution, there 
is a range of parameters in which no formation of a continuous ice-rock crust occurs, since 
only partial freezing occurs on account of the mineralization of pore water, and mineraliza- 
tion of flushing liquid leads to thawing of the ice which forms. This conclusion agrees with 
the observable formation of a "slush" zone in the experiment [2]. However, reduction in temp- 
erature of the flushing liquid results in decrease in content of unfrozen water in the partial- 
freezing zone, which leads to improvement in the strength properties and decrease in permea- 
bility of the frozen rock. 

NOTATION 

c, mass concentration of salt; T, temperature; Tph, phase-transtiion temperature; Tw, 
phase-transition temperature of pure water; X, coordinate of the zone boundary; v, moisture 
content (volume of liquid per unit pore volume); m, porosity; a, thermal diffusivity; D, 
diffusion coefficient of salt; ~, thermal conductivity; C, specific heat; p, density; q, heat 
of phase transition; ~, coefficient of reduction in phase-transition temperature; ~, self- 
similar variable; ~, 6, self-similar coordinates of the zone boundaries; ~, 8o, 8 o , ~ 0, and 
e0, dimensionless parameters introduced in Eq. (23). Indices: I, ice; w, water; s, skeletal 
frame of porous medium; *, value at zone boundary; O, initial and boundary conditions; T, 
thawed zone; F, frozen zone; t, two-phase zone. 
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